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EXECUTIVE SUMMARY 

Departments of transportation (DOTs) primarily rely on manual data collection and more 

recent mobile LiDAR (light detection and ranging) data collection methods, which are often 

time-consuming and costly, to update their maintenance feature inventory. Most existing studies 

investigating highway feature extraction in the literature focus on a single source of data, e.g., 

aerial LiDAR or imagery data. Because each source of input data contains its own characteristic 

visual features, the fusion of the characteristic and complementary features acquired from both 

sensors can provide more reliable information to facilitate the accurate detection of maintenance 

features and therefore improve the robustness of the algorithm, especially when data from either 

of the input sources are of low quality. In this study, we focus on selected maintenance features, 

i.e., traffic signs and light poles, for algorithm development purposes. That being said, the 

algorithms and workflows developed by this study can be readily extended to other maintenance 

features without difficulty. 

 In the first stage of this project, we propose an effective method to automatically detect 

traffic signs and light poles from mobile LiDAR data on the I-15 highway without any 

preprocessing or learning steps. Specifically, we first use the surface reconstruction algorithm to 

extract the normal vectors of the points as one of the characteristic features and apply k-means on 

the characteristic features of the points to automatically segment the data into road or nonroad 

points. We then employ sliding cuboids to search for high-elevated objects that are located near 

the borders and on top of the road points. We further employ the random sample consensus 

algorithm to remove outliers and keep the points that fall on the perpendicular planes to the road 

trajectory. Finally, we introduce a modified seeded region growing algorithm to remove noisy 

points and incorporate the shape information to reject the false objects. Extensive experiments 

have been carried out on the data sets, which are captured by UDOT along the I-15 highway. The 

results demonstrate the robustness of the proposed method in detecting almost all traffic signs 

and light poles.  

In the second stage of this project, we propose a novel deep learning method to accurately 

detect traffic signs by fusing the characteristic and complementary features in automatically 

registered airborne geo-referenced images and airborne LiDAR data. Specifically, we first 
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segment the airborne RGB images to road and nonroad segments. Second, we geo-reference the 

corresponding LiDAR data and find the road sections in this airborne LiDAR data. Third, we use 

the height information of the road points in LiDAR data to extract high elevated objects above 

the road. Fourth, we segment the extracted objects to different regions (traffic sign candidates) 

using Euclidean distance-based clustering. Fifth, we find the corresponding traffic sign 

candidates in RGB images. Finally, we extract convolutional neural network (CNN) features of 

traffic sign candidates and represent them in a convex optimization framework to classify them 

as traffic sign or nontraffic sign classes. A set of extensive experiments has been carried out on 

the airborne geo-referenced images and airborne LiDAR data captured by USU along the I-15 

highway. The results demonstrate the robustness of the proposed method in detecting traffic 

signs. Specifically, we provide the true positives, false positives, and true negatives of the 

proposed method on all nine sections of the data set. In total, there are 17 traffic signs in these 

sections. The proposed method extracts 24 traffic sign candidates. In the classification process, 

14 out of 24 candidates are correctly classified as traffic signs (true positives), three out of 24 

candidates are incorrectly classified as traffic signs (false positives), and seven out of 24 

candidates are correctly classified as nontraffic signs (true negatives). In other words, the 

proposed method is able to successfully extract 14 out of 17 traffic signs and achieve detection 

accuracy of 82.35%. 
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1.0 INTRODUCTION 

1.1 Problem Statement 

Departments of transportation (DOTs) primarily rely on manual data collection and more 

recent mobile LiDAR (light detection and ranging) data collection methods, which are often 

time-consuming and costly, to update their maintenance feature inventory. In a recent study, the 

research team at Utah State University (USU) investigated whether aerial LiDAR data can be a 

more cost-effective means than the mobile counterparts to identify highway features in areas 

where large-scale changes may have occurred and a way to keep the feature inventory current [1-

3]. In the airborne data collection conducted by USU in 2015, both aerial LiDAR point cloud and 

high-resolution aerial imagery data were obtained. Results of the study demonstrate that aerial 

LiDAR is a promising technology in detecting some highway features, such as guardrails, 

medians, and light poles as well as large road signs. It is also found that geo-referenced high-

resolution aerial imagery data can be used as an alternative means to identify highway features. 

Moreover, aerial imagery data are particularly suitable for developing automated procedures for 

highway feature extraction, which offers great potential in time and cost savings when updating 

feature inventory. With the advent of unmanned aerial vehicle (UAV) technology, high-

resolution aerial images will be much more affordable and easily accessible for transportation 

agencies in the future. Although the current multispectral aerial image data set was collected 

with a fixed-wing plane, the methodology developed for the current data set could be readily 

transferable to any UAV-based data collection platform. However, aerial imagery data do not 

contain any elevation information, which is critical for identifying some highway features. 

Most existing studies investigating highway feature extraction in the literature focus on a 

single source of data, e.g., aerial LiDAR or imagery data. Based on our previous studies, we 

found that each data collection method has advantages and limitations. The most effective 

approach to achieve the maximum level of accuracy and completeness is to combine data 

collected from multiple sources. The data set obtained from our recent UDOT study contains 

both aerial LiDAR and aerial imagery data and further provides us with a unique opportunity to 

pursue this research direction. Therefore, it is imperative to develop a data fusion approach that 

utilizes both aerial LiDAR and aerial imagery data to compensate for the limitations of both 
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methods. In addition, automated feature extraction using LiDAR data is an important aspect of 

large-scale applications. This study also aims to develop an efficient workflow for extraction of 

highway maintenance features using LiDAR data. 

In this study, we focus on selected maintenance features, i.e., traffic signs and light poles, 

for algorithm development purposes. That being said, the algorithms and workflows developed 

by this study can be readily extended to other maintenance features without difficulty. We 

choose to focus on traffic signs because they play an important role in any transportation system, 

e.g., they notify drivers about the current road situation, warn drivers to drive at the prescribed 

speed, and provide drivers with useful information for safe driving. Therefore, detection and 

identification of traffic signs is an important research direction, which is of great significance to 

prevent road traffic accidents and reinforce driver safety. In addition, reliable traffic sign 

detection and identification lead to better autonomous driving systems, more efficient road sign 

inspection, and faster transportation. Light poles are also investigated because they are not 

covered by the current UDOT inventory survey. 

1.2 Objectives 

The previous work mainly focuses on detecting maintenance features in images captured 

by on-board cameras or in mobile light detection and ranging (LiDAR) data captured by on-

board laser scanners. Because each source of input data contains its own characteristic visual 

features, the fusion of the characteristic and complementary features acquired from both data 

sources can provide more reliable information to facilitate the accurate detection of maintenance 

features and therefore improve the robustness of the algorithm, especially when data from either 

of the input sources are of low quality. In this project, we propose a novel deep learning method 

to accurately detect traffic signs by fusing the characteristic and complementary features in 

automatically registered airborne geo-referenced images and airborne LiDAR data.  

1.3 Scope 

This project consists of two major stages: 
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 In the first stage, we propose an effective method to automatically detect traffic signs 

and light poles from mobile LiDAR data of the I-15 highway without any 

preprocessing or learning steps. This method consists of three major steps: road 

points extraction, traffic sign and light pole detection and classification, and 

postprocessing for false objects rejection.  

 In the second stage, we design and implement a method that utilizes the 

complementary information captured from airborne RGB images and airborne 

LiDAR data to detect traffic signs in highway areas. This method consists of three 

major components: road extraction, traffic sign candidate detection, and traffic sign 

classification. 

1.4 Outline of Report  

Chapters included in this report are as follows: 

 Introduction 

o Problem Statement 

o Objectives 

o Scope 

 Literature Review of Previous Studies 

 Data Collection 

 Traffic Sign and Light Pole Detection in Mobile LiDAR  

o Road Point Extraction 

o Traffic Sign and Light Pole Extraction and Classification 

o Postprocessing 

o Data Evaluation 

 Qualitative Results 

 Quantitative Results 

 Traffic Sign Detection Using Registered Geo-Referenced RGB Images and Airborne 

LiDAR data 

o Road Extraction 

o Traffic Sign Candidate Detection 

o Traffic Sign Classification 

o Data Evaluation 

 Qualitative Evaluation  

 Quantitative Evaluation  
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 Conclusions 

o Overview 

o Conclusions 

o Findings 

o Challenges 
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2.0 DATA COLLECTION 

The mobile LiDAR data for the first stage of this project were collected by a UDOT 

(Mandli) vehicle with the following equipment: Velodyne LiDAR sensor, laser road imaging 

system, laser rut and crack measurement system, road surface profiler, and position orientation 

system. 

For the second stage of the project, we use geo-referenced RGB images and airborne 

LiDAR data, which were simultaneously captured from different sections of the I-15 highway 

located in Utah, United States, to more accurately identify maintenance features than using either 

geo-referenced RGB images or airborne LiDAR data. To collect the data, USU installed a 

camera and a LiDAR device on an airplane, which flew above the I-15 highway. 

The USU airborne LiDAR system is mounted in a single-engine Cessna TP206 aircraft 

(Figure 2.1). The system consists of a LiDAR scanner, IMU, and flight navigation unit. The 

LiDAR instrument consists of a Riegl Q560 transceiver and Novatel SPAN LN-200 GPS/IMU 

positioning and orientations system. Depending on the flight height, the LiDAR scanner is able 

to collect data at a pulse rate of 250,000 shots/seconds. Together with the LiDAR system, the 

USU airborne system is also equipped with multispectral and thermal infrared cameras, which 

can be used for aerial photos. The camera system is composed of four ImperX 4820 

Monochrome cameras with 4872 x 3248 pixels per camera. The cameras are also equipped with 

interface filters in the blue, green, red, and near-infrared (NIR) centered at 0.472, 0.562, 0.655, 

and 0.80 m, respectively.  
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Figure 2.1 USU Cessna TP206 Research Aircraft 

The input geo-referenced RGB images and the airborne LiDAR data contain information 

about the road, buildings, parking lots, vegetation, traffic signs, billboards, bridges, etc. In total, 

we are provided with 11 mosaic maps (produced by using the captured RGB images) and 14 

airborne LiDAR data sets. In our method, we concatenate the 14 LiDAR data sets to obtain a 

mosaic LiDAR map to facilitate the registration of RGB geo-referenced images and the LiDAR 

data.  
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3.0 LITERATURE REVIEW 

3.1 Overview 

In this chapter, we introduce some of the existing traffic sign detection methods and our 

proposed framework, which detect traffic signs in the highway areas by using registered geo-

referenced images and airborne LiDAR data. Specifically, in Section 3.2, we provide the 

literature review of representative traffic sign detection methods and the type of data sets utilized 

in each research work.  

3.2 Literature Review of Traffic Sign Detection  

Traffic signs are considered one of the most important maintenance features, as they 

inform drivers or recent autonomous cars on current road conditions. Various mature traffic sign 

extraction methods have been proposed using different types of data captured by different types 

of sensors. Two common categories of these methods utilize images and light detection and 

ranging scanning (LiDAR) data. Here, we briefly review several representative approaches that 

use camera images and LiDAR data.  

Substantial image-based algorithms have been proposed to detect and recognize traffic 

signs. For example, Soheilian et al. [4] present an automatic approach toward utilizing color 

information to identify the silhouette of signs in every individual image. The authors then 

propose a multiview constrained 3D reconstruction algorithm to provide an optimum 3D 

silhouette to detect traffic signs. Adam and Ioannidis [5] propose to extract traffic signs by using 

color images acquired by a camera mounted on a moving vehicle. They detect the regions of 

interest (ROIs) and classify them as traffic or nontraffic signs by feeding the regions’ histogram 

of oriented gradient (HOG) descriptors to a trained support vector machine (SVM). Khalid et al. 

[6] estimate a global threshold value using the correlation property of a given image and segment 

the regions of traffic signs based on the global threshold and morphological operations. They 

further detect traffic signs by feeding HOG descriptors to a trained SVM-k-nearest neighbor 

classifier. Despite the favorable performance of these algorithms using camera images, visual 
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features of traffic signs such as color, shape, and appearance are often sensitive to illumination 

conditions, angles of view, etc. 

Recently, researchers have proposed various methods utilizing LiDAR technology for 

traffic sign detection. However, the number of published works in this aspect is relatively small. 

Most of these methods use mobile light detection and ranging scanning (MLS) data, as they 

usually have better quality and density than airborne LiDAR. For instance, Pu et al. [7] introduce 

one of the pioneer studies in detecting and distinguishing traffic signs using LiDAR data. In this 

work, they initially segment data into one of the three coarse categories, including the ground 

surface, the objects on the ground, and the objects off the ground. They further use the size, 

shape, and orientation information to classify the on-ground points to more detailed classes such 

as traffic signs. Yokoyama et al. [8] employ principal component analysis (PCA) to extract pole-

like objects from MLS data and classify them into utility poles, lamp posts, or street signs. Yu 

and Li [9] propose a voxel-based upward growing method to remove the ground points and a 

voxel-based normalized cut to segment the remaining MLS point clouds data into street light 

poles, traffic signposts, or bus stations. Riveiro et al. [10] employ the geometric and radiometric 

information of retro-reflective traffic signs in the segmentation process to compute the optimal 

intensity threshold to separate traffic signs from backgrounds. Lehtomaki et al. [11] propose to 

remove ground and building points from the original data to reduce the search space. They then 

incorporate three sets of features, i.e., local descriptor histogram (LDH), spin images, and 

general shape and point distribution, to segment data into trees, lamp posts, traffic signs, cars, 

penetrations, and hoardings. The aforementioned method uses the three-dimensional information 

or reflectiveness of traffic signs for detection purposes. However, the quality of the three-

dimensional information is relatively low in the airborne LiDAR data due to the different angles 

of view, a large number of outliers, and different object poses. This degrades efficiency of these 

algorithms when dealing with airborne LiDAR data. 
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4.0 TRAFFIC SIGN AND LIGHT POLE DETECTION IN MOBILE LIDAR 

4.1 Framework of the Proposed Method 

In this study, we propose an effective method to automatically detect traffic signs and 

light poles from MLS point clouds in highway areas without any preprocessing or learning steps. 

This method consists of three major steps: road points extraction, traffic sign and light pole 

detection and classification, and postprocessing for false objects rejection: 

 

 Road Extraction: Extract the road in the following steps: 

o Using the surface reconstruction algorithm to extract normal vectors of the points as 

one of the selected characteristic features. 

o Proposing an unsupervised road point extraction scheme by applying the k-means 

clustering on the characteristic features. 

 

 Traffic Sign and Light Pole Candidate Detection and Classification: Detect traffic sign 

and light pole candidates and classify them in the following steps: 

o Designing a sliding cuboid to identify groups of candidate points by searching for the 

high elevated objects above or beside the roads. 

o Employing the random sample consensus (RANSAC) algorithm in a novel and 

unique way to select the robust candidate points by removing high elevated outliers 

that do not represent perpendicular planes along the vehicle trajectory. 

o Using the height property to classify the candidates into traffic sign and light pole 

classes. 

 

 Postprocessing: Remove the false objects in the following steps: 

o Proposing a LiDAR-modified seeded region growing algorithm to remove the noisy 

points around the objects. 

o Introducing a two-step postprocessing method to remove false positive objects. 



 

21 

 

4.1.1 Road Points Extraction 

The original point clouds, as the input, contain a large number of four-dimensional 

points. Each point includes the global positional values (i.e., x, y, and z) and the intensity value. 

The intensity is a measure of the returned strength of the laser pulse that is generated from the 

point. To reduce the computational time and facilitate processing, we segment the original point 

clouds to a predefined number of sections. Because the elevation of the points may gradually 

vary along the uneven or hilly road direction, the points in a smaller section tend to have more 

similar elevation than the points in a larger section. Each section is a portion of the data set along 

the length of the road (i.e., y axis). We then process each section separately in the following 

steps, and the resultant points are concatenated to uniquely represent the road. 

Normal Vector Extraction: This step aims to estimate the normal vector for each data 

point to represent its orientation. We adopt the surface construction method, which uses a fixed 

number of neighboring points to fit a local plane to determine the normal vector of each data 

point in a section. For each section, we include the location information (e.g., x, y, and z) of all 

the points in a set of three-dimensional data. We first find six nearest neighbors of a point in the 

set and fit a local plane to the neighborhood plane. We then compute the centroid of the points in 

the neighborhood plane. We finally employ the PCA method on the neighborhood plane to 

calculate the smallest principal vector as the normal vector.  

Data Points Clustering: This step clusters the data points to road or nonroad classes by 

incorporating the normal vector of the points as one of the characteristic features. Specifically, 

for each data point in the point clouds, we propose to concatenate its three-dimensional normal 

vector (i.e., orientation) with its z value (i.e., elevation) and intensity value (i.e., reflectivity) to 

construct a five-dimensional feature vector to represent its road characteristics. We then employ 

the k-means clustering algorithm, which is a powerful unsupervised method, with k being 2, to 

group all the data points into either the road or nonroad cluster.  

4.1.2 Traffic Sign and Light Pole Extraction and Classification 

Traffic signs are mostly located near the border or on top of the roads to be visible for 

drivers. In addition, light poles are raised sources of light on the edges of a road or path. We use 
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this prior information to eliminate the data points that are located off the road and eliminate the 

off-road counterfeit objects such as billboards and buildings that might have similar 

characteristics such as intensity and elevation as the traffic signs or light poles. As a result, we 

effectively reduce the search space in high-density MLS point clouds and reduce the 

computational time. In addition, we utilize some observational statistics (e.g., height, elevation, 

and planar projection of traffic signs or light poles) to further remove the points that are unlikely 

to be road points. 

Cuboid Searching: This step aims to utilize a sliding rectangular cuboid to find traffic 

signs located near the border or on top of the road and the light poles that are situated near the 

borders of the roads. Specifically, we use the road points in each section to find their ranges for 

the x and y values. We then select the points whose x and y values fall into these calculated 

ranges. It should be noted that the selected points may correspond to roads, traffic signs, light 

poles, bridges, moving vehicles, and other objects near or on the roads. To solve this issue, we 

design a rectangular cuboid search strategy to identify the points that correspond to traffic signs 

and light poles. We first define the starting point in the x–y plane of each section at the minimum 

x and y values of the points. We then put a rectangular cuboid with the dimension of 4×4×inf 

(i.e., no limitation in the z direction) at the starting point and continue moving this sliding cuboid 

along 4 m at the x direction or 4 m at the y direction until the sliding cuboids cover all the points. 

At each location of the cuboid, we have a set of points that can belong to traffic signs, light 

poles, and any other objects. We observe that a majority of traffic signs have an elevation range 

of more than 3 m and are located above 1.5 m from the road surface. Moreover, all the light 

poles have the range of elevation more than 3 m. Therefore, we first utilize the height 

information to filter out obvious outliers by removing a set whose range of z values is less than 3. 

For each kept set, we further remove any points with the height values less than an adaptive 

threshold, which is computed by a predefined value (e.g., 1.5) plus the mean height value of all 

the points in the set. The remaining points in a kept set form a candidate set for a traffic sign or a 

light pole. 

Plane Fitting: This step focuses on utilizing the planar property to extract traffic signs 

and light poles by finding the points that represent planes. In order to identify the region of 

interest in a candidate set for each cuboid location, we adopt the random sample consensus 
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(RANSAC) algorithm to discard the points that do not belong to a plane estimated by a sufficient 

number of inliers. RANSAC is an iterative method for estimating parameters of a mathematical 

model from a set of data points containing outliers. The input to RANSAC contains a candidate 

set, a parametrized fitting model, and two confidence parameters (e.g., the maximum distance 

and the maximum angular distance). The parametrized model is a reference normal vector, 

whose element is the projected value at the -y direction. This vector is used as an orientation 

constraint to fit a plane that has an approximate normal vector similar to the reference vector. 

RANSAC fits a plane to the input points to achieve the maximum distance and the maximum 

angular distance from the inlier points to the plane.  

Intensity Threshold: This step is to use highly reflective property to remove points that 

do not belong to traffic signs and light poles. Because traffic signs are covered by highly 

reflective materials to make them visible during inclement weather conditions, day or night, and 

light poles are manufactured with metals, their corresponding point clouds normally have higher 

intensities. We can then use the intensity information to extract traffic signs and light poles. In 

the proposed method, we discard a candidate set if the average intensity of the points within this 

set is less than a predefined threshold. All the remaining candidate sets for all sections are kept as 

candidates for traffic signs and light poles.  

Classification: The height property is used to classify the data into traffic sign and light 

pole classes. Because traffic signs in highway areas usually have lower elevation (height) than 

light poles, we use this prior information to estimate a threshold for the height of the candidates 

to automatically classify each candidate as either a traffic sign or light pole. For each set, we first 

find the range of z of its points. Second, we use an estimated threshold to segment the candidate 

points into two groups: Group 1 consists of all candidate points whose z ranges are less than the 

estimated threshold; Group 2 consists of the remaining candidate points. Third, we calculate the 

average z ranges for the candidate points in Group 1 and Group 2 as µ1 and µ2. Fourth, we update 

the estimated threshold by means of µ1 and µ2. Fifth, we repeat the process by segmenting the 

candidate points into two groups using the new estimated threshold until the difference between 

the threshold values in two iterations is smaller than a predefined number. 



 

24 

 

4.1.3 Postprocessing 

We aim to utilize shape information to eliminate the false objects from the classification 

results. To this end, we propose a two-step postprocessing method to achieve more reliable 

performance by removing the outliers of the projection points in the x–z plane and taking the 

shape of the cleaned projection points into consideration. We observe that the x–z projection of 

the points representing traffic signs and light poles is approximately rectangular shaped. The 

projection of the points that belong to false objects (e.g., trees, bridges, buildings, and vehicles 

on the road) usually does not exhibit a rectangular shape. Because outlier points can be randomly 

located around each object, they may make the overall convex hull of the projected points to be 

nonrectangular. To address this issue, we propose the modified seeded region growing algorithm 

to eliminate the outliers around the object. We then use the rectangular shape information to 

eliminate the false objects. 

Modified Seeded Region Growing: We propose the modified seeded region growing 

algorithm on the LiDAR data to group the potential object points and eliminate the outlier points 

around a candidate object. The modified seeded region growing method is able to robustly 

identify the same potential object points and recognize the same outlier points regardless of the 

initially selected seeds. It is also able to quickly identify a different number of neighbors for each 

data point based on its cloud density. At a location of a candidate cuboid in each section, the 

points in the traffic sign candidate set may represent a traffic sign object or a false object. 

Similarly, the points in a light pole candidate set may represent a light pole object or a false 

object. Regardless of the object types, there might be some outlier points around the objects. To 

eliminate these outliers, we randomly select a seed point and grow a uniform connected region 

from this seed. A point that has not been assigned to any other region is added to the seeded 

region if and only if the point is in the neighbor of the region and its distance to the region is less 

than a predefined threshold. Otherwise, the point will be a new seed for another region. 

To achieve this goal, for each traffic sign candidate set or light pole candidate set, we 

calculate its x–z projection. Any point in the x–z plane is selected as the seed; then, its six nearest 

neighbors, which can fit a local plane, are selected. A neighbor is added to the region containing 

the seed if its Euclidean distance to the centroid of the region is less than 0.5 m and it has not 
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been assigned to any region. The algorithm continues to find the six nearest neighbors of each of 

the added points and repeats the same process to grow the region. When no neighbor can be 

added to any existing region, the algorithm finds a point that has not been assigned to any region 

as the seed and starts repeating the same growth process. We save all the points identified in the 

growing regions in a region list.  

False Object Removal: We propose to use the shape information in the x–z plane to 

remove the points corresponding to false objects. Specifically, we find the largest connected 

component as ObjRegion for points within each candidate region list. We then find the minimum 

bounding box to cover the ObjRegion. 

For the traffic sign class, we find the convex hull around the points in the corresponding 

ObjRegion. We then compute the ratio of the area of the minimum bounding box to the area of 

the convex hull to decide whether the traffic sign class corresponds to the false objects. If the 

ratio is larger than a predefined threshold (e.g., 0.7), it indicates that the two areas are similar; 

therefore, we consider ObjRegion as a traffic sign. Otherwise, we consider ObjRegion as the 

false object and remove it from the final results. 

For the light pole class, we calculate the ratio of the length to the width of the minimum 

bounding box. If this ratio is larger than a predefined threshold (e.g., 5), it indicates ObjRegion is 

a tall rectangle; therefore, we consider it as a light pole. Otherwise, we consider ObjRegion as 

the false object and remove it from the final results. 

4.2 Data Evaluation 

4.2.1 Overview 

We evaluate the performance of the proposed traffic sign and light pole detection method 

by conducting various experiments on eight LiDAR data sets corresponding to eight miles of the 

I-15 highway. We denote the name of each data set by a three-digit number followed by a 

hyphen and another three-digit number. The first three-digit number shows the starting milepost 

of the I-15 highway; the second three-digit number shows the ending milepost. The names of the 

data set in our experiments are 304-305, 305-306, 258-259, 259-260, 261-262, 263-264, 247-
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248, and 262-263, respectively. The ground truth of the traffic signs and light poles for each data 

set is provided by manual inspection. 

4.2.2 Qualitative Evaluation 

In this section, we present the traffic sign and light pole extraction qualitative results for 

eight representative sections of the data sets 304-305 and 305-306 before and after involving the 

postprocessing step in Figures 4.1 and 4.2. Furthermore, we provide the qualitative results of the 

other six data sets after the postprocessing step in Figure 4.3. For all experiments, as discussed in 

Section 4.1, we divide the data set into 24 sections and separately process each section and 

concatenate the results of the sections to obtain the desired output. 
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Figure 4.1 Traffic sign and light pole extraction results of the proposed method before 

postprocessing vs. after postprocessing for eight representative sections of the data set 304-

305. (a) vs. (b) for section 2; (c) vs. (d) for section 3; (e) vs. (f) for section 5; (g) vs. (h) for 

section 8; (i) vs. (j) for section 13; (k) vs. (l) for section 15; (m) vs. (n) for section 19; and (o) 

vs. (p) for section 22. Extracted traffic signs are shown in blue; extracted light poles are 

shown in red. 
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Figure 4.2 Traffic sign and light pole extraction results of the proposed method before 

postprocessing vs. after postprocessing for eight representative sections of the data set 305-

306. (a) vs. (b) for section 3; (c) vs. (d) for section 6; (e) vs. (f) for section 7; (g) vs. (h) for 

section 8; (i) vs. (j) for section 12; (k) vs. (l) for section 15; (m) vs. (n) for section 19; and (o) 

vs. (p) for section 21. Extracted traffic signs are shown in blue; extracted light poles are 

shown in red. 
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Figure 4.3 Illustration of final (after postprocessing step) traffic sign extraction results in 

blue and light pole extraction results in red on six data sets. (a) 258-259; (b) 259-260; (c) 

261-262; (d) 262-263; (e) 263-264; and (f) 247-248. 
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4.2.3 Quantitative Evaluation 

We compare the extracted traffic signs and light poles with the ground truth of their 

counterparts to quantitatively evaluate the performance of the proposed method and its variant 

method. Table 4.1 lists the ground truth and the true and false positives of the proposed method 

before and after the postprocessing step on all eight data sets. It clearly shows that the proposed 

method with the postprocessing step successfully extracts 137 (e.g., 94.48%) traffic signs and 33 

(e.g., 89.19%) light poles, and the proposed method without the postprocessing step successfully 

extracts 139 (e.g., 95.86%) traffic signs and 33 (e.g., 89.19%) light poles. The proposed method 

with the postprocessing step incorrectly extracts 29 false objects, while the proposed method 

without the postprocessing step incorrectly extracts 70 false objects. It is clear that the proposed 

method detects most of the traffic signs and light poles prosperously. Moreover, it significantly 

reduces the number of false objects due to the use of the postprocessing step. 

Table 4.1 True and false positives of the proposed traffic sign and light pole extraction 

method (after postprocessing step) and its variant method (before postprocessing step) on 

all eight data sets. 

Dataset 

Ground Truth Variant Method Proposed Method 

Traffic 

Sign 

Light 

Pole 

Traffic 

Sign 

Light 

Pole 

False 

Object 

Traffic 

Sign 

Light 

Pole 

False 

Object 

258-259 16 3 16 2 4 16 2 2 

259-260 20 0 19 0 3 19 0 1 

261-262 20 0 18 0 6 18 0 3 

262-263 22 5 22 4 6 22 4 3 

263-264 19 12 18 11 12 18 11 5 

247-248 7 0 7 0 7 7 0 3 

304-305 23 8 22 8 25 21 8 9 

305-306 18 9 17 8 7 16 8 3 

Total 145 37 139 33 70 137 33 29 

 

To further evaluate the proposed method, we provide the confusion matrix along with six 

evaluation measures, including the number of missed objects, the number of false objects, recall 

(detection rate), precision, quality, and F1-Measure in Table 4.2. This confusion matrix shows 

that the proposed method (after postprocessing step) correctly classifies traffic signs and light 

poles in their corresponding classes. However, some false objects are predicted as traffic signs or 
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light poles mistakenly. The proposed method also misses a few objects (i.e., eight traffic signs 

and four light poles). The average recall, precision, quality, and F1-Measure of traffic sign and 

light pole extraction results are 91.84%, 87.85%, 81.31%, and 89.68%, respectively. 

Table 4.2 Confusion matrix along with six evaluation measures for each of the two classes 

in all eight data sets. 

 
Predicted 

Traffic Sign Light Pole 

Actual 
Traffic Sign 137 0 

Light Pole 0 33 

Missed Objects 8 4 

False Objects 26 3 

Recall 94.48% 89.19% 

Precision 84.04% 91.67% 

Quality 80.11% 82.50% 

F1-Measure 88.95% 90.41% 
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5.0 TRAFFIC SIGN DETECTION USING REGISTERED GEO-REFERENCED RGB 

IMAGES AND AIRBORNE LIDAR DATA 

5.1 Framework of the Proposed Method 

In this project, we design and implement a method that utilizes the complementary 

information captured from airborne RGB images and airborne LiDAR data to detect traffic signs 

in highway areas. This method consists of three major components: road extraction, traffic sign 

candidate detection, and traffic sign classification. 

 Road Extraction: Extract the road in the following three steps: 

o Segment the airborne images to road and nonroad regions by integrating various types 

of local features in a quadratic optimization model with inequality constraints. 

o Learn the road regions using sparse dictionary learning and employ morphological 

operations to refine the segmentation results. 

o Map the candidate road regions in airborne images to their counterparts in the 

corresponding airborne LiDAR data using the image to global coordinate projection. 

 

 Traffic Sign Candidate Detection: Detect traffic sign candidates in the following three 

steps: 

o Incorporate the height information of the road points to extract the high elevated 

objects above the road regions. 

o Segment the extracted high elevated objects to traffic sign candidates using the 

Euclidean distance-based clustering algorithm. 

o Map the traffic sign candidates with enough number of points to their counterparts in 

the airborne RGB images. 

 

 Traffic Sign Classification: Classify the candidates in the following two steps: 

o Use the VGG19 pretrained convolutional neural network (CNN) to extract local deep 

features to represent traffic sign candidates. 
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o Incorporate the local deep features in a designed local embedded convex 

optimization framework to classify each representation as one of the two classes: 

the traffic sign class and the nontraffic sign class. 

In the following, we explain each of the three components of the proposed 

method. We illustrate the experimental results at each of the important stages on a sample 

pair of airborne RGB images and airborne LiDAR data. 

 

5.1.1 Road Extraction 

The size of the input geo-referenced RGB image is too large to be fed into any 

segmentation algorithm. As a result, we select a region of the input image that contains the road 

and resize it to 25% of its actual size as a necessary preprocessing step. Different complementary 

local features, including color, gradients, soft segmentation, and texton, are individually 

extracted and then combined to represent each region. These combined local features are 

represented in a quadratic optimization problem with inequality constraints. Using the joint 

feature representation, segmentation results can be easily obtained by labeling each region to the 

index of the largest element of the corresponding column. To refine the segmentation results, we 

use the two prebuilt dictionaries, which are, respectively, constructed by a sufficient number of 

road points and nonroad points, to keep the candidate road regions that are well-represented by 

the prebuilt road dictionary (i.e., the regions with the low reconstruction error). We further apply 

morphological operations to find the road region. To achieve this goal, we find the connected 

components and keep the largest connected component as the final main road section result 

because the main road covers the larger area of the input image. We map the candidate road 

sections in airborne images to their counterparts in the corresponding LiDAR data using the 

image to the global coordinate projection. To this end, we use affine transformation parameters 

to construct the transformation matrix between pixel indices in the airborne RGB images and the 

global coordinates. We then convert the global coordinate to the latitude/longitude coordinate 

system of the airborne LiDAR data. Figure 5.1 shows the input airborne image (top left), its 

input airborne LiDAR data (top right), the segmentation results in the airborne image (bottom 

left), the road section result in the airborne image after employing the road point sparse 
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dictionary learning and morphological refinement (bottom middle), and the extracted road region 

in the LiDAR data after projection (bottom right). 

 

 

 

 

 

 

Figure 5.1 Sample pair of airborne images (selected from i15-north-rect-r1-c1 mosaic) and its 

corresponding LiDAR data (top row) and their sample road extraction results (bottom row). 
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5.1.2 Traffic Sign Candidate Detection 

We utilize the height ( ) information of the extracted road points in the LiDAR data to 

extract the high elevated objects above the road sections. To achieve this, we first calculate the 

histogram of the   value of the extracted road points in the LiDAR data. We then find the center 

of the bin of the histogram, which has the maximum number of points, and set the center value as 

the threshold   . Next, we filter out the points whose   values are less than      , where    is 

empirically determined to filter out the cars or any low elevated objects on the road. Finally, we 

use the Euclidean distance-based clustering algorithm to segment the extracted high elevated 

objects to traffic sign candidates. We further remove the segments containing less than 50 points 

because the traffic sign regions are usually in a sizeable rectangular shape. We finally map the 

outlier removed traffic sign candidates to the airborne RGB images using the LiDAR to image 

pixel indices projection. Figure 5.2 demonstrates two of the extracted traffic sign candidates in 

the airborne image for the selected region. 

 

5.1.3 Traffic Sign Classification 

Due to the small number of available images in our data set, training a CNN for the 

classification task cannot lead to an accurate model. Instead, we employ a pretrained deep neural 

network, which is trained on more than 1 million images categorized into 1,000 classes. We use 

this pretrained network to extract the deep features for each traffic sign candidate. To this end, 

we resize the traffic sign candidates to 112×112×3 and pass them to the VGG-Net 19. We extract 

the features from layer Conv 5-4 and resample the output to the size of 28×28×512. We further 

Figure 5.2 Two traffic sign candidates extracted in the selected region of the sample 

airborne image. 
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construct nine local feature maps with the size of 14×14×512 using the stride of 7 from the 

resampled output. We then flatten each local feature map into a vector and perform PCA to 

obtain the top 1,120 features. We utilize the deep local features in a designed local-embedded 

convex optimization problem to represent the candidates by a set of traffic sign templates, which 

are constructed by randomly selecting 15 traffic signs in the data set. A pooling strategy is finally 

employed to assign a score to each candidate. A candidate with a higher score than a predefined 

threshold is considered as a traffic sign. The two traffic sign candidates shown in Figure 5.2 are 

classified as belonging to the traffic sign class because their scores are greater than the 

predefined threshold. 

5.2 Data Evaluation 

5.2.1 Overview 

In this section, we evaluate the performance of the proposed method on nine different 

sections of the I-15 highway by providing qualitative and quantitative results, including true 

positives, false positives, and true negatives.  

5.2.2 Qualitative Evaluation 

In this section, we provide road and traffic sign extraction results on eight additional 

sections of multiple pairs of airborne images and LiDAR data. Specifically, we present the 

sample pair of airborne image and LiDAR data (top row), their road extraction results (middle 

row), and the traffic sign candidate extraction results in the airborne image (bottom row) in 

Figures 5.3 through 5.9, respectively. We also label the classification result of each traffic sign 

candidate at the bottom left of each airborne image in the bottom row of each figure, with “TS” 

indicating the traffic sign and “NTS” indicating the nontraffic sign. 

5.2.3 Quantitative Evaluation 

In addition, we provide the true positives, false positives, and true negatives of the 

proposed method on all the nine sections of the data set. In total, there are 17 traffic signs in 

these sections. The proposed method extracts 24 traffic sign candidates. In the classification 
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process, 14 out of 24 candidates are correctly classified as traffic signs (true positives), three out 

of 24 candidates are incorrectly classified as traffic signs (false positives), and seven out of 24 

candidates are correctly classified as nontraffic signs (true negatives). In other words, the 

proposed method is able to successfully extract 14 out of 17 traffic signs and achieve the 

detection accuracy of 82.35%. 

 

Figure 5.3 Section2 (selected from i15-north-rect-r2-c1 mosaic): Airborne image and its 

corresponding LiDAR data (top row) together with their road extraction results (middle 

row) and the traffic sign candidate extraction results in the airborne image (bottom row). 

Two traffic signs are present in this data set. The proposed algorithm extracts five traffic 

sign candidates and correctly classifies two of them as traffic signs (labeled as TS in the 

left bottom) and two of them as nontraffic signs (labeled as NTS in the left bottom). It 

incorrectly classifies one of the candidates as traffic sign (labeled as TS in the left bottom). 
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Figure 5.4 Section3 (selected from i15-north-rect-r3-c1 mosaic): Airborne image and its 

corresponding LiDAR data (top row) together with their road extraction results (middle 

row) and the traffic sign candidate extraction results in the airborne image (bottom row). 

Two traffic signs are present in this data set. The proposed algorithm extracts one traffic 

sign candidate and correctly classifies it as traffic sign (labeled as TS in the left bottom). 
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Figure 5.5 Section4 (selected from i15-north-rect-r3-c1 mosaic): Airborne image and its 

corresponding LiDAR data (the top row) together with their road extraction results (middle 

row) and the traffic sign candidate extraction results in the airborne image (bottom row). 

One traffic sign is present in this data set. The proposed algorithm extracts three traffic sign 

candidates and correctly classifies one of them as the traffic sign (labeled as TS in the left 

bottom) and one of them as the nontraffic sign (labeled as NTS in the left bottom). It 

incorrectly classifies one of the candidates as the traffic sign (labeled as TS in the left 

bottom). 
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Figure 5.6 Section 5 (selected from i15-north-rect-r3-c1 mosaic): Airborne image and its 

corresponding LiDAR data (the top row) together with their road extraction results 

(middle row) and the traffic sign candidate extraction results in the airborne image 

(bottom row). Two traffic signs are present in this data set. The proposed algorithm 

extracts three traffic sign candidates and correctly classifies two of them as traffic signs 

(labeled as TS in the left bottom) and the other one as the nontraffic sign (labeled as NTS in 

the left bottom). 
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Figure 5.7 Section6 (selected from i15-north-rect-r3-c1 mosaic): Airborne image and its 

corresponding LiDAR data (top row) together with their road extraction results (middle 

row) and the traffic sign candidate extraction results in the airborne image (bottom row). 

One traffic sign is present in this data set. The proposed algorithm extracts one traffic sign 

candidate and correctly classifies it as the traffic sign (labeled as TS in the left bottom). 
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Figure 5.8 Section7 (selected from i15-north-rect-r4-c1 mosaic): Airborne image and its 

corresponding LiDAR data (the top row) together with their road extraction results 

(middle row) and the traffic sign candidate extraction results in the airborne image 

(bottom row). Three traffic signs are present in this data set. The proposed algorithm 

extracts three traffic sign candidates and correctly classifies two of them as traffic signs 

(labeled as TS in the left bottom). It incorrectly classifies one of candidates as the traffic 

sign (labeled as TS in the left bottom). 
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Figure 5.9 Section 8 (selected from i15-north-rect-r4-c1 mosaic): Airborne image and its 

corresponding LiDAR data (top row) together with their road extraction results (middle 

row) and the traffic sign candidate extraction results in the airborne image (bottom row). 

Two traffic signs are present in this data set. The proposed algorithm extracts two traffic 

sign candidates and correctly classifies one of them as the traffic sign (labeled as TS in the 

left bottom) and the other one as the non-traffic sign (labeled as NTS in the left bottom). 
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6.0 CONCLUSION 

6.1 Overview 

In this section, we present the conclusion of this research, important findings, and the 

most important challenges during the project. 

6.2 Conclusion 

In the first stage of this project, we propose a fast and reliable traffic sign and light pole 

detection method, which can be applied to the MLS data to quickly identify various traffic signs 

and light poles. A set of experiments has been carried out on the eight data sets that are captured 

by USU along the I-15 highway. The extensive experimental results demonstrate that the 

proposed method is able to successfully detect 137 (e.g., 94.48%) traffic signs and 33 (e.g., 

89.19%) light poles in the eight data sets. In other words, the proposed method is robust in 

detecting almost all traffic signs and light poles with a few numbers of false positives. Our 

contributions are: 1) employing the surface reconstruction algorithm to extract the orientation of 

the points as one of the characteristic features; 2) applying the unsupervised k-means clustering 

algorithm to automatically extract road points; 3) designing a sliding cuboid to search for the 

high elevated objects above or beside the roads as groups of candidate points; 4) employing the 

RANSAC algorithm to select the robust candidate points that represent planes along the vehicle 

trajectory; 5) proposing a modified seeded region growing algorithm to remove the outlier points 

around the objects; 6) introducing a shaped-based false object rejection algorithm to remove the 

false positive objects. 

In the second stage of this project, we effectively fuse the complementary information of 

airborne geo-referenced images and airborne LiDAR data to accurately detect the traffic signs 

along the I-15 highway in the state of Utah. Our designed method consists of three main 

components: 1) road extraction; 2) traffic sign candidate detection; 3) traffic sign classification. 

Two uniquely designed convex optimization models are, respectively, employed in the road 

extraction and traffic sign classification components to accurately identify road candidates and 

traffic signs. The joint local features and the deep local features are also seamlessly employed in 
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these two optimization models to provide a more accurate representation of the road and the 

traffic signs, respectively. The experimental results demonstrate that the proposed framework 

performs well in detecting traffic signs. 

6.3 Findings 

Some of the important findings in this research project are summarized as follows: 

 Using the complementary information form RGB images and airborne LiDAR 

data helps to more accurately detect traffic signs in the I-15 highway areas. 

 Extracting the road regions is an essential initial step, which helps to reduce the 

searching areas for the traffic signs.  

 Representing the deep local features in a designed local-embedded convex 

optimization problem helps to classify each traffic sign candidate as either traffic 

sign class or nontraffic sign class. 

6.4 Challenges 

The most important challenges of this research work are summarized below: 

 Registration of the RGB images and the airborne LiDAR data, which is necessary 

for any further processing. 

 Design and implementation of an image-processing technique to automatically 

extract road regions from the mosaic maps.  

 Similarity between the road regions and other regions in the RGB images in terms 

of color and texture. 

 Low density in airborne LiDAR data sets for objects such as traffic signs and 

buildings due to the high altitude of the airplane used to capture the LiDAR data. 

 Large number of outlier points in the LiDAR data set. 

 Design of an optimization problem to model the deep local features of traffic 

signs. 

 Solving the optimization problem numerically, which is essential for correct 

classification of traffic sign candidates. 
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In summary, we investigated the potential of a data fusion approach of combining the 

complementary features acquired from both on-board cameras and LiDAR sensors for extracting 

highway maintenance features. The results demonstrated the robustness of the proposed data 

fusion approach. A number of research extensions can be considered in future studies. First, with 

the advent of UAV-based LiDAR technology, we would like to test the proposed data fusion 

approach on an UAV-based LiDAR platform. Second, we plan to test more powerful deep 

learning techniques to improve the accuracy of our algorithms. 
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